Министерство образования и науки Нижегородской области Государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный инженерно-экономический университет»

> **УТВЕРЖДАЮ** Председатель экзаменационной комиссии

<u>М</u> Н.И. Сутягина « do» Январья 2025 г.

Программа вступительных испытаний по дисциплине «Математика» в ГБОУ ВО НГИЭУ в 2025 году для абитуриентов, поступающих на обучение по программам магистратуры

СОДЕРЖАНИЕ

- 1.ОБЩИЕ УКАЗАНИЯ
- 2.ТРЕБОВАНИЯ К ПРОВЕДЕНИЮ ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА
- 3. СИСТЕМА И КРИТЕРИИ ОЦЕНИВАНИЯ ЭКЗАМЕНАЦИОННОЙ РАБОТЫ
- 4. СОДЕРЖАНИЕ ПРОГРАММЫ ПО МАТЕМАТИКЕ.
- 5. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. ОБЩИЕ УКАЗАНИЯ

- 1.1 Вступительное испытание (экзамен) по математике проводится в соответствии с Правилами приема на обучение по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры в ГБОУ ВО «Нижегородский государственный инженерно-экономический университет» в 2025 году, утвержденными приказом ректора от 20.01.2025 г. № 53/01-03 (далее Правила приема) для абитуриентов, поступающих на обучение по программам магистратуры, Порядком проведения вступительных испытаний с применением электронного обучения и дистанционных образовательных технологий, утвержденным приказом ректора от 25.05.2020 г. № 453/01-03.
 - 1.2 Экзамен по математике проводится в письменной форме.
- 1.3 Экзамен по математике может проводиться с применением электронного обучения и дистанционных образовательных технологий.
- 1.4 Перед вступительным испытанием для абитуриентов проводится консультация по содержанию программы вступительного испытания, по предъявляемым требованиям, критериям оценки.
- 1.5 В качестве экзаменационного материала используется материал по всем основным разделам высшей математики: линейная алгебра и аналитическая геометрия, математический анализ, теория вероятностей и математическая статистика и т.д.
- 1.6 В ходе вступительного испытания оцениваются обобщенные знания и умения по основам высшей математики.
- 1.7 Работа состоит из двух частей и содержит 16 заданий. Часть 1 содержит 12 тестовых заданий открытого и закрытого типа. Часть 2 содержит 4 задания с развернутым ответом.
- 1.8 Продолжительность экзамена 180 минут. Если экзамен проводится с применением электронного обучения и дистанционных образовательных технологий, то его продолжительность составляет 185 минут.

2. ТРЕБОВАНИЯ К ПРОВЕДЕНИЮ ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА

- 2.1 Допуск абитуриентов до экзамена осуществляется после прохождения ими процедуры идентификации личности.
- 2.2 При проведении вступительного испытания по математике без применения электронного обучения и дистанционных образовательных технологий экзаменационный материал предоставляется не менее чем в двух вариантах, варианты среди абитуриентов распределяются экзаменатором. При проведении вступительного испытания по математике с применением электронного обучения и дистанционных образовательных технологий задания распределяются случайным образом автоматически электронной информационно-образовательной средой университета (ЭИОС), которая используется при проведении экзамена.
- 2.3 Время, отведенное для сдачи экзамена, отсчитывается с момента доступа абитуриента к экзаменационному материалу.
- 2.4 При проведении вступительного испытания по математике без применения электронного обучения и дистанционных образовательных технологий экзаменационная работа оформляется на листах со штампом университета. По истечении отведенного для экзамена времени листы экзаменационной работы абитуриент сдаёт экзаменаторам. Перед проверкой экзаменационной работы все экзаменационные листы (титульный лист, чистовики, черновики) передаются в Приемную комиссию, где они шифруются представителем Приемной комиссии. При этом каждому абитуриенту присваивается условный код, который проставляется на титульном листе и на каждом чистовике и черновике. Все листы с записями данного абитуриента скрепляются в единый комплект.

Титульные листы хранятся в Приемной комиссии, а комплекты чистовиков и черновиков передаются председателю или члену предметной экзаменационной комиссии для проверки. Проверка письменных работ проводится только в помещении университета. Задания экзаменационной работы, выполненные абитуриентом на титульном листе или на его обороте, а так же на черновиках, не проверяются экзаменаторами и претензии по ним не принимаются. После проверки баллы выставляются на экзаменационной работе. Представитель Приемной комиссии производит декодирование письменных работ. Баллы, проставленные экзаменаторами на письменных работах, заносятся в экзаменационную ведомость и подписываются экзаменаторами.

2.5 При проведении вступительного испытания по математике с применением электронного обучения и дистанционных образовательных технологий ответы на задания 1-12 вносятся абитуриентами в предлагаемую ЭИОС зону или выбираются абитуриентами из предлагаемых вариантов, ответы на задания 13-16 прикрепляются экзаменуемыми в формате pdf, jpeg, jpg, png, tiff, bmp в сроки, установленные временем проведения экзамена. Если расширение имени прикрепленного файла не соответствует указанному выше формату, файл поврежден, файл не удается открыть из-за проблем с содержимым и(или) невозможно рассмотреть, однозначно прочитать содержимое прикрепленного документа, члены экзаменационной комиссии могут не проверять задание и оценивать его в 0 баллов. Задание оценивается в 0 баллов, если прикрепленный ответ содержит элементы алгоритмического, машинного или машинно-ориентированного языка.

2.6 Оценка за экзамен объявляется в соответствии с Правилами приема.

3. СИСТЕМА И КРИТЕРИИ ОЦЕНИВАНИЯ ЭКЗАМЕНАЦИОННОЙ РАБОТЫ

Результаты сдачи экзамена оцениваются по 100-балльной шкале. Максимально возможная суммарная оценка - 100 баллов. Минимальный балл для участия поступающих в дальнейшем конкурсе — 27 баллов. Абитуриент, набравший на экзамене по математике менее 27 баллов, к дальнейшему участию в конкурсе не допускается.

	частям экзаменац	

Часть	Количес	Максимальн	Процент максимального балла	Тип задания
работы	ТВО	ый балл	за выполнение заданий данной	
	заданий		части от максимального балла	
			за всю работу	
Часть 1	12	60	60	Тестовые задания
				открытого и
				закрытого типа
Часть 2	4	40	40	С развернутым
				ответом
Итого	16	100	100	

Каждое из заданий 1-12 считается выполненным верно, если экзаменуемый выбрал верный ответ из предложенных (в тестовых заданиях закрытого типа) или дал верный ответ (в тестовых заданиях открытого типа). Каждое верно выполненное задание 1-12 оценивается 5 баллами.

Задания 13 - 16 — задания с развернутым ответом (полная запись решения с обоснованием выполненных действий). Количество баллов, выставленных за выполнение заданий 13 - 16, зависит от полноты решения и правильности ответа. Решения заданий 13 - 16 с развернутым ответом оцениваются от 0 до 10 баллов. Общие требования к выполнению заданий с развёрнутым ответом: решение должно быть грамотным, полным,

все возможные случаи должны быть рассмотрены. Методы решения, формы его записи и формы записи ответа могут быть разными. За решение, в котором обоснованно получен правильный ответ, выставляется максимальное число баллов. Правильный ответ при отсутствии текста решения оценивается в 0 баллов. Экзаменаторы проверяют только содержание представленного решения, а особенности записи не учитывают. При выполнении задания можно использовать без дополнительного обоснования любые факты, содержащиеся в учебниках и учебных пособиях, входящих в Федеральный перечень учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования.

Полное правильное решение каждого из заданий 13 – 16 оценивается 10 баллами.

Содержание критерия заданий 13 – 16	Баллы	
Обосновано получен верный ответ		
Построена верно математическая модель решения, решение сведено к	8	
исследованию этой модели, имеется верная последовательность шагов		
решения, получен результат, но при решении допущена одна		
вычислительная ошибка		
Построена верно математическая модель решения, решение сведено к	6	
исследованию этой модели, имеется верная последовательность шагов		
решения, получен результат, но при решении допущены более одной		
вычислительной ошибки		
Построена верно математическая модель решения, решение сведено к	5	
исследованию этой модели и получен результат, но верный ответ		
недостаточно обоснован		
Построена верно математическая модель решения, решение сведено к	4	
исследованию этой модели, но решение не доведено до конца		
Построена верно математическая модель решения, решение сведено к	3	
исследованию этой модели, но решение не доведено до конца и допущены		
вычислительные ошибки		
Построена верно математическая модель решения, но не выполнены	2	
дальнейшие исследования и решение не доведено до конца		
или		
Построена верно математическая модель решения, получен верный ответ,		
но отсутствует обоснованная последовательность шагов решения		
Представлена только одно утверждение, формула и т.п., применение	1	
которых необходимо для решения задачи		
Решение не соответствует ни одному из критериев, приведённых выше		
Максимальный балл	10	

4. СОДЕРЖАНИЕ ПРОГРАММЫ ПО МАТЕМАТИКЕ

- 1. Понятие комплексного числа и его геометрическая интерпретация.
- 2. Комплексно-сопряженные числа. Модуль комплексного числа. Действия сложения, вычитания с комплексными числами.
- 3. Комплексно-сопряженные числа. Модуль комплексного числа. Действия умножения, деления с комплексными числами.
- 4. Тригонометрическая форма комплексного числа. Действия умножения и деления с комплексными числами в тригонометрической форме.
- 5. Тригонометрическая форма комплексного числа. Действия возведения в степень и извлечения степени с комплексными числами в тригонометрической форме.
 - 6. Показательная форма комплексного числа и действия с комплексными числами.
- 7. Числовые последовательности. Бесконечно малая и бесконечно большая числовые последовательности.
 - 8. Предел числовой последовательности. Раскрытие неопределенностей: $\frac{\infty}{\infty}$, $\frac{0}{0}$, ∞ ∞ .
 - 9. Предел числовой последовательности. Раскрытие неопределенностей: 1^{∞} , ∞^0 , 0^0 .
 - 10. Первый и второй замечательные пределы (следствия).
 - 11. Виды функций. Предел функции.
 - 12. Определение производной.
 - 13. Основные правила и формулы дифференцирования.
 - 14. Уравнение касательной и нормали к кривой в данной точке.
 - 15. Производные высших порядков.
 - 16. Интервалы возрастания и убывания функций.
- 17. Точки экстремума. Необходимое и достаточное условия экстремума функции с одной переменной.
- 18. Нахождение наибольшего и наименьшего значения функции на заданном интервале.
 - 19. Асимптоты функции.
 - 20. Частные производные первого и второго порядка.
 - 21. Градиент функции с двумя переменными.
 - 22. Экстремумы функции с двумя переменными.
 - 23. Условный экстремум.
 - 24. Метод наименьших квадратов.
 - 25. Первообразная и неопределенный интеграл.
 - 26. Таблица интегралов.
 - 27. Методы интегрирования (метод замены переменных).
 - 28. Методы интегрирования (метод интегрирования по частям).
 - 29. Методы интегрирования (интегрирование рациональных функций).
 - 30. Методы интегрирования (интегрирование тригонометрических функций).
 - 31. Определенный интеграл и его свойства. Формула Ньютона-Лейбница.
 - 32. Методы вычисления определенного интеграла.
 - 33. Приложение определенного интеграла.
 - 34. Несобственные интегралы.
 - 35. Кратные интегралы.
 - 36. Дифференциальные уравнения. Основные понятия и определения.
 - 37. Дифференциальные уравнения первого порядка с разделяющимися переменными.
 - 38. Однородные дифференциальные уравнения первого порядка.
 - 39. Линейные дифференциальные уравнения первого порядка.
- 40. Линейные дифференциальные уравнения n-го порядка с постоянными коэффициентами.
 - 41. Системы линейных дифференциальных уравнений.

- 42. Линейные разностные уравнения.
- 43. Понятие ряда и его сходимости. Свойства сходящихся рядов.
- 44. Признаки сходимости положительных рядов.
- 45. Знакопеременные ряды. Абсолютная и условная сходимость.
- 46. Функциональные ряды.
- 47. Степенные ряды.
- 48. Ряды Тейлора и Маклорена. Применение рядов к приближенным вычислениям.
- 49. Ряды Фурье.
- 50. Векторы и линейные операции над ними.
- 51. Скалярное, векторное, смешанное произведение векторов.
- 52. Прямая на плоскости: уравнение прямой с угловым коэффициентом, общее уравнение прямой, уравнение прямой, проходящей через заданную точку и уравнение прямой, проходящей через две точки.
 - 53. Угол между двумя прямыми на плоскости. Расстояние от точки до прямой.
 - 54. Условия параллельности и перпендикулярности двух прямых на плоскости.
- 55. Плоскость. Общее уравнение плоскости. Частные случаи общего уравнения плоскости. Уравнение плоскости, проходящей через три заданные точки. Уравнение плоскости в отрезках.
 - 56. Угол между двумя плоскостями. Расстояние от точки до плоскости.
 - 57. Условия параллельности и перпендикулярности двух плоскостей.
 - 58. Общие уравнения прямой в пространстве.
- 59. Угол между двумя прямыми в пространстве. Условия параллельности и перпендикулярности прямых в пространстве.
- 60. Взаимное расположение прямой и плоскости в пространстве. Угол между прямой и плоскостью в пространстве.
 - 61. Окружность. Эллипс.
 - 62. Гипербола.
 - 63. Парабола.
 - 64. Поверхности второго порядка.
 - 65. Понятие векторного (линейного) пространства. Базис линейного пространства.
 - 66. Линейные операторы.
 - 67. Квадратичные формы.
- 68. Понятие матриц и действия над ними (сложение, умножение на число).

Элементарные преобразования матриц. Эквивалентные матрицы.

- 69. Произведение матриц. Свойства действия умножения матриц.
- 70. Понятие определителя матрицы. Методы вычисления. Свойства определителей.
- 71. Понятие обратной матрицы. Теорема о единственности обратной матрицы.

Необходимое и достаточное условие существования обратной матрицы.

- 72. Свойства обратной матрицы. Вычисление обратной матрицы.
- 73. Алгоритм решения произвольной системы линейных уравнений.
- 74. Формулы Крамера, метод Гаусса.
- 75. Линейный оператор.
- 76. Собственные векторы и собственные значения матриц.
- 77. Квадратичная форма.
- 78. Приведение квадратной матрицы к диагональному виду.
- 79. Задачи математического программирования.
- 80. Абсолютная и относительная погрешности приближенного числа
- 81. Задачи приближенного решения уравнений.
- 82. Интерполяция и оценка погрешности интерполяции.
- 83. Численное дифференцирование.
- 84. Численное интегрирование.
- 85. Численное решение систем линейных уравнений.

- 86. Случайные события, их классификация. Классическое определение вероятности.
- 87. Условные вероятности.
- 88. Вероятность произведения и суммы событий.
- 89. Формула полной вероятности. Формула Байеса.
- 90. Независимые испытания. Формула Бернулли, формула Пуассона.
- 91. Понятие случайной величины. Закон распределения случайной величины.
- 92. Числовые характеристики дискретных случайных величин.
- 93. Непрерывные случайные величины. Функция распределения вероятностей и плотность вероятности.
 - 94. Числовые характеристики непрерывных случайных величин.
- 95. Равномерное распределение, показательное распределение, нормальное распределение.
 - 96. Закон больших чисел.
- 97. Системы случайных величин. Числовые характеристики системы двух случайных величин.
- 98. Выборка. Статистическое распределение выборки. Числовые характеристики статистического распределения.
 - 99. Статистическое оценивание.
 - 100. Проверка статистических гипотез.
 - 101. Корреляционно-регрессионный анализ.
 - 102. Дисперсионный анализ.
 - 103. Основы теории множеств. Отношения на множествах.
- 104. Теория графов. Маршруты в графе. Эйлеровы и гамильтоновы графы. Деревья. Алгоритмы на графах.
- 105. Логика высказываний. Булевы функции. Полнота. Предикаты. Применение булевых функций.

5. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Для подготовки можно использовать учебники и учебные пособия, рекомендованные Учебно-методическим отделом высшего образования. Примерный перечень данной литературы:

- 1. Баврин, И. И. Математический анализ: учебник и практикум для вузов / И. И. Баврин. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2025. 327 с. (Высшее образование).
- 2. Ильин, В. А. Математический анализ в 2 ч. Часть 1 в 2 кн. Книга 2 : учебник для вузов / В. А. Ильин, В. А. Садовничий, Б. Х. Сендов. 4-е изд., перераб. и доп. Москва : Издательство Юрайт, 2025. 315 с. (Высшее образование).
- 3. Ильин, В. А. Математический анализ в 2 ч. Часть 2: учебник для вузов / В. А. Ильин, В. А. Садовничий, Б. Х. Сендов. 3-е изд. Москва: Издательство Юрайт, 2025. 324 с. (Высшее образование).
- 4. Кремер, Н. Ш. Математический анализ: учебник и практикум для вузов / Н. Ш. Кремер, Б. А. Путко, И. М. Тришин; ответственный редактор Н. Ш. Кремер. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2025. 593 с. (Высшее образование).
- 5. Кремер, Н. Ш. Математическая статистика: учебник и практикум для вузов / Н. Ш. Кремер. Москва: Издательство Юрайт, 2025. 259 с. (Высшее образование).
- 6. Линейная алгебра и аналитическая геометрия: учебник и практикум для вузов / Е. Г. Плотникова, А. П. Иванов, В. В. Логинова, А. В. Морозова; под редакцией Е. Г. Плотниковой. Москва: Издательство Юрайт, 2025. 416 с. (Высшее образование).
- 7. Никитин, А. А. Математический анализ. Углубленный курс: учебник и практикум для вузов / А. А. Никитин, В. В. Фомичев. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2025. 456 с. (Высшее образование).
- 8. Палий, И. А. Линейное программирование : учебник для вузов / И. А. Палий. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2025. 175 с. (Высшее образование).
- 9. Попов, А. М. Теория вероятностей и математическая статистика: учебник и практикум для вузов / А. М. Попов, В. Н. Сотников; под редакцией А. М. Попова. 3-е изд., перераб. и доп. Москва: Издательство Юрайт, 2025. 425 с. (Высшее образование).
- 10. Попов, А. М.Экономико-математические методы и модели: учебник для вузов / А. М. Попов, В. Н. Сотников; под общей редакцией А. М. Попова. 3-е изд., испр. и доп. Москва: Издательство Юрайт, 2025. 345 с. (Высшее образование).
- 11. Численные методы: учебник и практикум для вузов / под редакцией У. Г. Пирумова. 5-е изд., перераб. и доп. Москва: Издательство Юрайт, 2023. 421 с. (Высшее образование).
- 12. Шипачев, В. С. Дифференциальное и интегральное исчисление: учебник и практикум для вузов / В. С. Шипачев. Москва: Издательство Юрайт, 2025. 212 с. (Высшее образование).