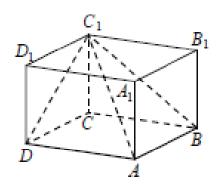

ПРИМЕРНЫЕ ЗАДАНИЯ К ВСТУПИТЕЛЬНЫМ ИСПЫТАНИЯМ ПО ПРИКЛАДНОЙ МАТЕМАТИКЕ


1.

Острый угол *B* прямоугольного треугольника *ABC* равен 21°. Найдите величину угла между биссектрисой *CD* и медианой *CM*, проведёнными из вершины прямого угла *C*. Ответ дайте в градусах.

Ответ:	
2.	

В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что BC = 9, CD = 3, $CC_1 = 7$. Найдите объём многогранника, вершинами которого являются точки A, B, C, D, C_1 .

Ответ:	

3.

Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Изумруд» играет два матча с разными командами. Найдите вероятность того, что в этих матчах команда «Изумруд» начнёт игру с мячом не больше одного раза.

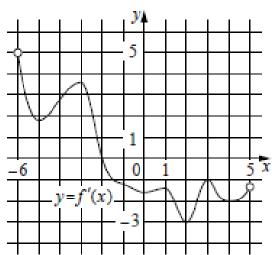
Ответ:	

4.

В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в первом автомате закончится кофе, равна 0,1. Вероятность того, что кофе закончится во втором автомате, такая же. Вероятность того, что кофе закончится в двух автоматах, равна 0,05. Найдите вероятность того, что к концу дня кофе останется в двух автоматах.

Ответ:			
5.			

Найдите корень уравнения $\sqrt{9x-47} = 4$.


Ответ:	
--------	--

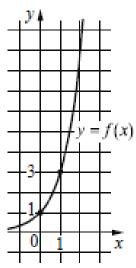
Найдите значение выражения	$5\sqrt{2}\cos^2$	$\frac{7\pi}{8} - 5\sqrt{2}$	$\frac{1}{2}\sin^2\frac{7\pi}{8}$.

Ответ:	
VIDUI.	

7.

На рисунке изображён график y = f'(x) — производной функции f(x), определённой на интервале (-6;5). В какой точке отрезка [-5;-2] функция f(x) принимает наименьшее значение?

Ответ:	


8.

Водолазный колокол, содержащий $\upsilon=3$ моль воздуха при давлении $p_1=1,4$ атмосферы, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха до конечного давления p_2 (в атмосферах). Работа A (в Дж), совершаемая водой при сжатии воздуха, вычисляется по формуле $A=\alpha\upsilon T\log_2\frac{p_2}{p_1}$, где $\alpha=10,9$ $\frac{\text{Дж}}{\text{моль}\cdot\text{K}}$ — постоянная, $T=300\,\text{K}$ — температура воздуха. Найдите давление p_2 воздуха в колоколе, если при сжатии воздуха была совершена работа 29 430 Дж. Ответ дайте в атмосферах.

p_1	моль · К
постоянная, $T = 300 \text{ K}$ — температура воздуха. Найдите	давление p_2
воздуха в колоколе, если при сжатии воздуха была совершена Дж. Ответ дайте в атмосферах.	работа 29 430
Ответ:	
9.	
Катя и Настя, работая вместе, пропалывают грядку за 24 минуты, за 42 минуты. За сколько минут пропалывает грядку одна Катя?	а одна Настя —
Ответ:	

10.

На рисунке изображён график функции вида $f(x) = a^x$. Найдите значение f(3).

Ответ:	

11.

Найдите точку максимума функции $y = x^3 - 300x + 5$.

Ответ:	

12.

а) Решите уравнение

$$\log_{9}\left(3^{2x} + 5\sqrt{2}\sin x - 6\cos^{2}x - 2\right) = x.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-2\pi; -\frac{\pi}{2}\right]$.

13.

Решите неравенство
$$\frac{8^{x+\frac{2}{3}}-9\cdot 4^{x+\frac{1}{2}}+13\cdot 2^{x}-13}{4^{x+\frac{1}{2}}-9\cdot 2^{x}+4}\leq 2^{x+1}-\frac{1}{2^{x}-2}+\frac{3}{2^{x+1}-1}.$$

14.

Для производства изделий трех видов A_1 , A_2 , A_3 предприятию требуется три вида сырья B_1 , B_2 , B_3 . В производственной матрице содержатся сведения о требуемом количестве сырья для производства одного изделия вида A_1 , A_2 , A_3 :

Изделие		Сырье	
изделис	B_1	B_2	\mathbf{B}_3
A_1	5	3	4
A_2	2	1	1
A_3	3	2	2

Запасы сырья B_1 , B_2 , B_3 соответственно равны 2700 <u>усл.ед.</u>, 900 <u>усл.ед.</u>, 1600 <u>усл.</u> ед. Необходимо определить план выпуска продукции, используя все имеющееся в наличии сырье.

15.

Доказать, что
$$\lim_{x\to 2} (3x+1) = 7$$

16.

Найти объем тела, образованного вращением вокруг оси Ox фигуры, ограниченной графиком функций $y^2 = 4x$, x = 4

17.

Доказать, что решением дифференциального уравнения
$$\left(\frac{dy}{dx}\right)^2 - \frac{dy}{dx} - x\frac{dy}{dx} + y = 0$$
 является функция $y = cx + c - c^2$, где $c = const$

18.

Доказать, что кривая, у которой угловой коэффициент касательной в любой точке пропорционален абсциссе точки касания, есть парабола.